亚洲精品无码专区,免费看裸裸体美女啪啪无遮挡,免费A片在线观看,国产又粗又大又硬又长又爽

復納科學儀器(上海)有限公司
技術文章
您現在所在位置:首頁 > 技術中心 > 粉末 ALD 包覆技術為電池穿上鎧甲

粉末 ALD 包覆技術為電池穿上鎧甲

 更新時間:2021-09-26 點擊量:1914

封面.jpg

隨著新能源技術的不斷發展,電池已經成為必要的工具,在消費電子和日常出行中都得到了廣泛的應用。而在電池的使用中,循環使用壽命,能量密度以及安全性是決定其性能的關鍵指標。這是因為電池在運行過程中,會因為嵌鋰,金屬溶解,開裂,枝晶生長,放氣等問題導致電池性能下降,而在目前的技術方案中,電池電極材料的工藝改善是提升電池整體性能的重中之重,其中 ALD 技術(原子層沉積)具有出色的成膜均勻性,保形性以及精確性,從而備受矚目。

 

但因為高昂的成本和設備要求,該技術一直停留在實驗室階段。Forge Nano 經過多年研發,已經開發出低成本的規模化原子層沉積粉末包覆技術。

 

1.jpg

電池性能下降與電池內部的有害副反應及材料物理性能息息相關

 

表面包覆的作用及其挑戰

 

表面包覆因其zhuo越的改善表面/界面性能的效果而被廣泛用于電極材料的改性。一般對電極材料尤其是正極材料的包覆,其包覆層的應具備的功能包括:

 

1)物理隔絕,抑制界面副反應
2)防止電解質的侵蝕,抑制過渡金屬溶解
3)提升導電能力(電子電導與離子電導)
4)表面改性,促進界面電荷轉移
5)穩定結構,減輕相變應力

 

2.jpg

理想的包覆效果

 

而為了實現這些功能,包覆層一般需要滿足以下要求:

 

1)薄且均勻
2)保證電導
3)機械性能高,并在充/放電循環后保持穩定
4)包覆工藝簡單且可拓展

 

較厚的包覆涂層雖然可以提供強有力的屏障,尤其是高溫穩定性,但不利于離子擴散。而島狀包覆以及不均因的包覆會在表面留下較多缺陷,并不能*阻止電解液與材料之間的接觸與反應。而目前的主流包覆技術以干法與濕法為主,很難提供均勻且厚度可控的超薄涂層。ALD 技術(原子層沉積)具有出色的成膜均勻性,保形性以及精確性,從而備受矚目(詳情見??:如何用 ALD 技術實現高質量的粉末包覆)。

 

3.jpg

過厚,不均勻,島狀包覆均不是理想的涂層

 

ALD 技術利用交替式的通入化學前驅體的方式實現自限制性的納米級涂層包覆,與其他包覆方式相比,其成膜質量好,均勻保形,無針孔,且厚度可控。下圖為常用的液相包覆法-溶膠凝膠法與 ALD 包覆的對比,通過 TEM 結果可看出,ALD 包覆涂層更加均勻,且無明顯的團聚顆粒。

 

4.jpg

溶膠凝膠法與 ALD 包覆的涂層對比,ALD 涂層更均勻,無明顯大顆粒產生

 

ALD 包覆支持的材料以及涂層

 

可用于電極材料包覆的基底材料有很多,包括高鎳三元,鈷酸鋰,錳酸鋰等常見正極,以及石墨,硅碳等負極材料。Forge Nano 使用其技術通過 ALD 包覆后(詳情見??:粉末 ALD 設備選型),其循環使用壽命,安全性,電化學性能都有穩定的提升。

 

5.jpg

Forge Nano 的 Picoshield Battery 包覆技術

 

ALD 可以支持多種涂層,針對電極材料,可以選擇氧化物(Al2O3、TiO2、ZnO、SiO2)、含氮化合物(TiN, LiPON),氟化物(AlF3),磷酸鹽(AlPO4、TiPO4、LixAlPO4),含鋰化合物(LixTiyOz, LixByOz, LixAlyOz)以及有機雜化涂層(Alucone、Tincone)作為涂層材料。通過 ALD 技術的特性,可以更容易地實現不同成分且厚度可控的涂層的交替包覆。ALD 豐富的工藝選擇提供更加復雜的梯度電極設計,包覆固態電解質以及活性組分也已被多項研究證明切實可行。

 

6.jpg

ALD 包覆可適用于多種涂層(單質,氧化物,氮化物,氟化物,硫化物,三元化合物)

 

氧化物的包覆較為常見,Al2O3被認為是氧化物涂層中zui好的氧化物,在循環中會與三元體系生成中間層,也有理論認為 Al2O3會與電解液反應生成中間層(LiPO2F2),該層會抵御 HF 對活性材料的腐蝕,同時降低表面阻抗并改進循環穩定性。

 

提升材料穩定性

 

納米級的包覆涂層可以有效維持電極材料的穩定性,在橡樹嶺國家實驗室團隊與 Forge Nano 的一項研究中,使用中試級流化床系統 Al2O3 包覆后,三元正極材料在循環后可保持更穩定的結構,同時減少其相變以及相應的裂紋擴展。

 

7.jpg

包覆后的材料穩定性更強

 

8.jpg

包覆后裂紋明顯減少

 

提升循環使用壽命

 

較高的充電電壓往往會引起更多的副反應,削弱電極的穩定性。Forge Nano 的 ALD 工藝可以防止過度金屬遷移,從而防止活性材料溶解和電池容量損失,在電池循環時保持低電阻。此外,ALD 涂層還通過降低電池放電和充電過程中鋰嵌入 / 脫嵌的能量勢壘,從而提高鋰離子導電性。降低電池電阻的反過來會促使電池壽擁有更高的容量保持率。

 

9.jpg

ALD 包覆 NMC811 材料在循環后擁有更好的容量保持率

 

10.jpg

ALD 包覆能顯著提高高電壓下的三元材料循環使用壽命

 

安全性改善

 

電池運行過程中會伴隨風險,熱失控是其中最主要的安全隱患。因為電池結構不良、內部短路、ji端溫度波動或不當使用引發的:在短時間內產生大量熱量的不受控制的連鎖反應,嚴重時會導致爆炸和火災,對消費者的生命財產造成嚴重傷害。因此,商用電池在投入使用前必須要經過一系列的安全測試。

 

?ALD 包覆的電池在電池安全性和耐久性的許多標準測試中表現優異,?包括 ARC、過充電和針刺試驗。釘刺測試旨在模擬電池內部短路,從而反映電池故障后的表現。通過放置在電池兩側的熱電偶測量,ALD 包覆優化的電池在穿透后表現出更好的散熱性能。??

 

ALD 電池在熱失控和過壓測試期間也表現優異。ARC 測試會逐步加熱電池,直到它們不再穩定并發生熱失控。經過多次“加熱和等待"間隔后,ALD 改性后的電池總體上顯示出較少的熱量產生,并且多次重復后的自生熱率較低。對于超過安全工作電壓的電池,其表現同樣出色。

 

11.jpg

ALD 包覆后更高的高電壓針刺實驗通過率

 

12.jpg

ARC 測試中 ALD 包覆的電池自生熱更慢,且失控溫度更高

 

負極材料的人工 SEI 涂層

 

鈍化 SEI 層的形成是高性能電池設計和功能的基本因素。SEI 層的作用包括防止電解質進一步分解以保持循環能力,但不夠致密或者過快的膜生長速率都會影響電池的性能。因此,使用 ALD 技術可以為負極材料人工生成鈍化層,起到和 SEI 膜類似的功效,同時避免了天然 SEI 膜的弊端。對于石墨負極,傳統的氧化物包覆便可起到提升性能的功效。

 

13.jpg

ALD 包覆的石墨負極在循環后擁有更好的容量保持率

 

MLD / 電解質包覆硅負極

 

硅負極因其較高的理論容量被認為是理想的下一代商業負極材料,但目前仍存在體積膨脹,容量衰減快,穩定性差等問題。MLD 被證明可以在硅負極表面形成均勻的有機雜化涂層,并明顯提高硅負極的電化學性能。美國國家可再生能源實驗室(NREL)的研究表明,經過有機雜化涂層包覆后的 Si 負極表現出更好的容量保持率以及平均庫倫效率。而 Li 的有機雜化涂層更表現出優于 LiPON 涂層的電化學性能。

 

14.jpg

MLD 涂層對 Si 負極容量保持率及庫倫效率的提升

 

Forge Nano 的工業級電池電極材料包覆技術

 

在目前的粉末 ALD 解決方案中,仍存在吞吐量過低的問題。Forge Nano 擁有工業級粉末 ALD 處理方案,通過空間 ALD 技術與流化床/旋轉床的結合,可實現單日噸級的粉末處理量。自成立以來,Forge Nano 已經與眾多新能源企業及研究機構展開合作,并授權生產 ALD 包覆電池。目前,Forge Nano 可提供代包覆,合作研發,設備服務以及授權生產的服務。從實驗室研發到工業化的電極材料生產,Forge Nano 無疑是zui 好的合作伙伴(詳情請見??:粉末 ALD 設備選型)。

 

圖片16.png

 

 

參考文獻

 

【1】Nisar U, Muralidharan N, Essehli R, et al. Valuation of Surface Coatings in High-Energy Density Lithium-ion Battery Cathode Materials[J]. Energy Storage Materials, 2021.
【2】Mohanty D, Dahlberg K, King D M, et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Scientific reports, 2016, 6(1): 1-16.
【3】King D M, Dameron A, Lichty P, et al. Low-Cost Encapsulation of Silicon-Based Nanopowders Final Report[R]. Forge Nano, Louisville, CO (United States), 2018.

傳真:

郵箱:info@phenom-china.com

地址:上海市閔行區虹橋鎮申濱路 88 號上海虹橋麗寶廣場 T5,705 室

版權所有 © 2018 復納科學儀器(上海)有限公司   備案號:滬ICP備12015467號-2  管理登陸  技術支持:化工儀器網  GoogleSitemap